7.2 Aggregates

Ray intersection acceleration structures are one of the components at the heart of any ray tracer. Without algorithms to reduce the number of unnecessary ray intersection tests, tracing a single ray through a scene would take time linear in the number of primitives in the scene, since the ray would need to be tested against each primitive to find the closest intersection. However, doing so is extremely wasteful in most scenes, since the ray passes nowhere near the vast majority of primitives. The goals of acceleration structures are to allow the quick, simultaneous rejection of groups of primitives and to order the search process so that nearby intersections are likely to be found first and farther away ones can potentially be ignored.

Because ray–object intersections can account for the bulk of execution time in ray tracers, there has been a substantial amount of research into algorithms for ray intersection acceleration. We will not try to explore all of this work here but refer the interested reader to references in the “Further Reading” section at the end of this chapter.

Broadly speaking, there are two main approaches to this problem: spatial subdivision and object subdivision. Spatial subdivision algorithms decompose 3D space into regions (e.g., by superimposing a grid of axis-aligned boxes on the scene) and record which primitives overlap which regions. In some algorithms, the regions may also be adaptively subdivided based on the number of primitives that overlap them. When a ray intersection needs to be found, the sequence of these regions that the ray passes through is computed and only the primitives in the overlapping regions are tested for intersection.

In contrast, object subdivision is based on progressively breaking the objects in the scene down into smaller groups of nearby objects. For example, a model of a room might be broken down into four walls, a ceiling, and a chair. If a ray does not intersect the room’s bounding volume, then all of its primitives can be culled. Otherwise, the ray is tested against each of them. If it hits the chair’s bounding volume, for example, then it might be tested against each of its legs, the seat, and the back. Otherwise, the chair is culled.

Both of these approaches have been quite successful at solving the general problem of ray intersection computational requirements; there is no fundamental reason to prefer one over the other. The BVHAggregate is based on object subdivision and the KdTreeAggregate (which is described in the online edition of this book) is based on spatial subdivision. Both are defined in the files cpu/aggregates.h and cpu/aggregates.cpp.

As with the TransformedPrimitive and AnimatedPrimitive classes, the intersection methods for aggregates are not responsible for setting the material, area light, and medium information at the intersection point: those are all set by the actually intersected primitive and should be left unchanged by the aggregate.